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A range of new perturbation theory problems is considered. A connection is established between different 

types of oscillation shape in configuration space and manifolds defined in phase space. A construction of 

bases on these manifolds is given, so that each basis unit vector defines one of the evolution forms of an 

oscillation shape under the influence of the perturbation. Algebraic properties of the local evolution basis 

are established. A classification of the perturbations is introduced according to the nature of the evolution 

induced on the oscillation shape. The control and stability problems for the oscillation shapes are solved. 

Similar problems include, in particular, the problem of controlling waves in uniaxial and triaxial 

gyroscopes, based on the inertia effect for elastic waves [l, 21. 

1. THE PROBLEM OF THE PERTURBATION OF AN OSCILLATION SHAPE IN SYSTEMS 

WITH MULTIPLE ROOTS 

A QUASILINEAR OSCikitOry SyStem Of the form 

A9” +B9 = eQ(c 4,9’) (1-l) 
is considered, where A and B are symmetric positive-definite IZ x IZ matrices, q is a vector of 
dimensions n, and the right-hand side is a perturbation which is formalized by the presence of the 
small factor E. 

Without loss of generality the matrix A can be taken to be the unit matrix, and the matrix B to be 
diagonal. 

If there is no perturbation (E = 0), any trajectory of system (1.1) in configuration space is 
everywhere dense in a multidimensional parallelepiped, if the eigenfrequencies are incommensur- 
able (the non-resonant case). If however there is resonance, a subspace exists in which every 
trajectory is a closed curve. Such curves are called Lissajous figures. They are unstable with respect 
to infinitesimally small perturbations: either they disappear completely, or they change to a figure 
with a different shape. 

The following three problems are posed concerning these unstable trajectories: (1) to give a 
description of the evolution which these figures undergo when perturbations appear; (2) to classify 
external perturbation forces according to the evolution they create; and (3) to construct a control 
that ensures the stability of given figures. 

We shall only consider principal resonances, i.e. resonances of smallest order for a given 
multiplicity. This corresponds to the presence of multiple frequencies for natural oscillations in 
system (1.1) for E = 0, for which it has a proper subspace corresponding to a multiple root, in which 
all trajectories are ellipses lying in some linear two-dimensional subspace. In the case of multiplicity 
of two, this manifold coincides with the proper subspace itself. 

Only four fundamental types of infinitesimal evolution exist for this ellipse under perturbations: a 
change in the principle axes, a change in the orientation of the axes of the ellipse with respect to the 
basis space (we shall call this shape precession), a change in the velocity of motion of the point along 
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the ellipse, and finally, the transformation of the ellipse into a shape which cannot be considered as 
an evolution of one of the first three types. (We shall call this latter type of evolution shape 
destruction.) 

The geometrical and algebraic properties of the given types of evolution depend principally on the 
dimensions of the eigenspaces in which this evolution proceeds, and hence they should be studied 
for every value of the multiplicity of the eigenfrequencies separately. Below we shall consider the 
cases k = 2 and k = 3. 

2. THE CASE OF A DOUBLE EIGENFREQUENCY 

In this case one can isolate the following subsystem from system (1.1) 

9;‘+9,=cQl(t,9,9’), i=1.2 (2.1) 

in which we can make the change of phase variables (ql , q2, q;, q;)+ (x1 , x2, x3, x4) according to 
the formulae 

9 = (Lcost, Esinf)x, y’=(-Esint, Ecosr)x (2.2) 

System (2.1) is rewritten in standard form to which we apply the averaging method [3]. In the first 
approximation of this method in slow variables we obtain the system 

(2.3) 

the right-hand side of which is related as follows with the right-hand side of system (2.1) 

(2.4) 

E being the 2 x 2 unit matrix. 
System (2.1) is connected to all the remaining equations of system (1.1). This connection in Eqs 

(2.3) will vanish if we assume that the dependence of Q, and Q2 on t is periodic with period 27~ or 
else is completely absent, and that their dependence on q and q’ does not contain powers higher 
than two. (The general case can be considered by introducing a small-scale variation of the variables 
q with subsequent construction of higher approximations by an averaging method.) 

If E = 0, then in Eqs (2.3) x=const and in configuration space the trajectories of the original 
system are ellipses, i.e. every point of phase space x determines a specific elliptic trajectory in the 
space q. Among the elliptic trajectories there are degenerate trajectories of two types: these are 
either sections of a straight line or circles. 

In the first case, x in (2.2) should satisfy the condition 

Kc&t x’ x3 =O II I x2 x4 
(2.5) 

In the second case, relations (2.2) should define a rotation group, for which it is necessary and 
sufficient that x1 = x4 and x2 = -x3, or x1 = -x4 and x2 = x3. 

Both the latter conditions can be combined 

L=(X,+X‘#t(X2TX3)~=0 (2.6) 

3. MANIFOLDS OF DEGENERATE SHAPES. LOCAL EVOLUTION BASIS 

In the space of x, Eq. (2.5) defines a three-dimensional conic surface, every point of which 
corresponds to a straight-line oscillation in configuration space. Equation (2.6) defines a two- 
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dimensional manifold, which is the “axis” of this cone, and each point of which corresponds to 
motion in a circle. All other points define elliptic trajectories. 

In system (2.1) we choose initial conditions so that for E = 0 a straight-line oscillation shape will 
ensue, i.e. the initial point in system (2.3) lies on the cone (2.5). Then for E # 0 the straight-line 
oscillation shape will undergo one of the following evolutions: shape destruction, shape precession, 
change of oscillation frequency, or change of amplitude. To all these types of evolution of the 
straight-line shape there correspond definite phase space directions. 

The direction of fastest destruction of the straight-line shape is given by the normal to the cone 

(2.5) 

e, =dK/dx =1x4, --x3, --x2, x1 ] (3.1) 

To construct the directions giving precession, we subject (2.2) to a rotation transformation (A is a 
rotation matrix) 

IA cosf, AsinT]x = IEcost, Esintly *y =y(x, o) 

We find the relation between the new variables y and the old variables x together with the angle of 
rotation (Y 

Y, = x, cos~l tx,+i sina, Ym+1 = -x, sina t x, + 1 cosq m=1.3 

The vector determining the required direction has the form 

e2 =WW(y=o =1x2, -xl, x4, -x3] (3.2) 

To construct the direction giving a change in frequency, we subject (2.2) to a translation 
transformation in time (T is the transformation parameter) 

lEcos(t t r), Esin(t t r)]x = 1 Ecosr, Esintly *y = y(x, r) 

From this we also find the relation between the new variables and the old ones together with the 
translation parameter 

Y??Z = x, cost +x, +2 sinr, ym+2 = -x, sinr t x, + 2 cost. m=1,2 

The vector giving the required direction is found to be 

e,=d~hW,,~=Ix3, x4, -xl, -x21 (3.3) 

To construct the direction giving the change in amplitude, we make (2.2) undergo a dilation 
transformation 

(I +~)lEcost, Esinr]x=( Ecost, Esintly*y =y(x, v) 

The required direction has the form 

e4=0/dc1=lx1, x2, x3, x4] (3.4) 

The four vector fields (3.1)-(3.4) d e fi ne a local basis for infinitesimal evolutions at every point of 
the vector space. 

4. PROPERTIES OF THE EVOLUTION BASIS 

We compute the Gram matrix [4] of the vector system (3.1)-(3.4) 

(el-ei)...(el.e4) x2 0 0 2K 

: : 
0 X2 -2K 0 

f-g= = 
* . P -2K x2 0 
(e4. el)‘. . . (e4. e4) 2K 0 0 x2 

(4.1) 
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If follows from this that the evolution basis is orthogonal 
determinant 

detG = (x4 - 4K j2 

on the cone K = 0. The Gram 

is equal to zero on the manifold 2K = rtx’, coinciding with the manifold (2.6), i.e. with the axis of 
the cone K = 0. The four vector fields (3.1)-(3.4) generate four one-parameter Lie groups [3,4] of 
mappings of the phase space into itself with operators 

lJ,=x&X&x~-&-+x& *2=X2--b_x,d+x4a-x a 
1 2 3 4 ax, ax, ax3 3 ax4 (4.2) 

*~=x,;+x,;-x,$-x,~, a a a a 

ax4 

lJ, =x1 -+X2-+Xj-tX4- 
1 2 3 ax, ax2 ax3 ax4 

Computing the commutators, we find [Uk, U/] = 0 for all k and 1. This means that the evolution 
basis generates a four-parameter commutative (Abelian) Lie group, whose representation in the R4 
group of automorphisms is identical with the maximum commutative subgroup of the group 
GL(4, R). It follows from this that the general solution of system (2.3) for a right-hand side of the 
following form 

x’=a,el +azc2 ++e3 +a4e4 (4.3) 

where the ak are arbitrary constants, is a composition of the general solutions of the following 
systems 

x’=akek k=l, . . . . 4 

This means that the global evolutions of the oscillation shape in system (2.11, generated by the 
fields (3.1)-(3.4), do not depend on one another. 

We shall follow as an example the evolution of a cone of rectilinear oscillations along the vector field er , (the 
cone K being invariant under the remaining fields). 

Because II, K = llx\/* and Ur /Ix112 = 4K, the complete evolution of the cone along the group U, is 

exp(+U,7)K=KCh27+‘/211xIIzsh2~ 

As T+ m the limiting manifold 

Kr*/zlxn~=O 

coincides with the axis of the cone K-(2.6). 
Figure 1 shows the trajectory of a point generated by the field el . 

5. CLASSIFICATION OF FORCES BY THE TYPE OF EVOLUTION THEY GENERATE 

We consider in system (2.1) forces that are linear in the coordinates and velocities and 
independent of time 

FIG. 1. 
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(5.1) 

I-= 
0 Y I II -Y 0 

Here S is a symmetric matrix of potential position forces of spherical type, H is a similar matrix of 
hyberbolic type, N is a skew-symmetric matrix of circular (properly non-conservative) position 
forces, D is a symmetric matrix of dissipative forces of spherical type, R is a similar matrix of 
hyperbolic type, and I is a skew-symmetric matrix of gyroscopic forces. The matrices S and D are 
diagonal (spherical tensors), and the matrices H and R have zero trace (deviators). 

Substituting (5.1) into (2.4), we find expressions for the right-hand sides in system (2.3) 
corresponding to the following forces 

s: X(x)=%s]-x& -x4, Xl, x21, H: X(x)=Mhl {-x3, x4, x1, -x21 t 

+%!hzI--X4. --x3, x2. x1;, Iv: X(x)= '/inI--X4, x3, x2. -x1/. 

D: X(x)=%4x1, x2. x3, x4], R: X(x)=%rlj.xl, --x2, x3. -x4] t 

t41r21x2, Xl, x4, x31, l-: X(x)=%71x2, -x1, x4, -X3) 

In order to clarify what evolution is produced by all these forces, it is sufficient to project them 
onto the vectors of the evolution basis (3.1)-(3.4). The results are presented in Table 1, which gives 
a complete picture of the influence of linear perturbations on the evolution of the oscillation shapes. 

For example, spherical potential forces (S) only lead to a change in the oscillation frequency if the 
oscillation shape is rectilinear (K = 0). If however Kf 0 (elliptic trajectory) then there also appears 
a precession for the ellipse. Circular forces only lead to the destruction of the rectilinear shape 
(K = 0) and to a change in the amplitude if Kf 0. 

6. THE PROBLEM OF STABILIZING THE SHAPE OF THE OSCILLATION 

In linear systems of the form (2.1) the rectilinear shape of the oscillations is unstable for 
constantly-acting perturbations. As follows from Table 1, in the presence of forces H and N of no 
matter how small an amplitude, this shape is impossible. We pose the following problem: it is 
required to find a form of feedback such that the rectilinear shape is asymptotically stable. Here the 
feedback should be such that it does not lead to any other kind of shape evolution. 

This problem has technical applications [l]. If the rectilinear shape is stable, then observation of 
its precession gives information about any gyroscopic forces present in the system. 

We apply forces Q(X) to system (2.1) such that the cone (2.5) is a stable integral manifold [6] 

TABLE 1 

s H N D R r 

e, 0 -h,K'+'/ih,K" -'/illxU"n dK 0 0 
e, SK 0 0 0 r,K'- ?&,K" ‘h-f llxll’ 
e3 -‘hsHxl12 -%(h,K"+h,K) 0 0 0 -=lK 
e, 0 -0 -nK %dllxH2 %r,K"+r,K' 0 

K'=x,x2 +x,x,, K"=x; -xi +x: -xj 
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FIG. 2 

under constantly acting perturbations. In order for these forces not to influence the frequency and 
precession of the shape, they should satisfy the conditions (Q . e2) = 0 and (Q . e3) = 0. 

In system (2.3) we choose a feedback (control) of the form 

X(x)=-Kel-Se.,, S=%(llxll’-1) (6.1) 

If S = 0 the oscillation amplitude is unity. 
The presence in the control of a term proportional to S pursues the aim of not only stabilizing the 

shape itself, but also its amplitude. Equations (2.1) take the form 

dx/dt = -e(Kq + Se4) (6.2) 

We construct equations governing the changes of K and S in the force (6.2). Using the fact that 
dKfdt = dK/dx-x’ = elx’ and dSldt = dSldx-x’ = e4x’, and also bearing in mind the Gram matrix 
(4.1) and the equality llxj12 = 2s + 1, we obtain 

dKfdt=-K(l +2s)-2SK, dS/dl=-2KZ --s(l +2S). 

The phase portrait of this two-dimensional system is shown in Fig. 2. We have two singular points 
(--l/q, -l/4) and (i/4, -%) of saddle-point type and one singular point (0,O) of stable-focus type. 
Because K n S is compact it follows from the exponential stability of the zero point that K n S is 
stable under constantly acting perturbations. 

In order to ensure a control of the form (6.1) in system (2.3), it is necessary to apply 
non-conservative forces with matrices N and D to system (2.1), as can be found from Table 1 

&.+4=-e(NqtDqj (6.3) 

and to choose numbers n and d proportional to K and S. 
Then small perturbations to system (6.3) do not lead to the destruction of the rectilinear shape of 

the oscillations, or to changes to its amplitude. If however the initial shape of the oscillation is not 
rectilinear, then by Eq. (6.3) it will tend asymptotically to rectilinear. 

7. THE CASE OF A TRIPLE NATURAL FREQUENCY (1: 1: 1 RESONANCE) 

In this case one can isolate the following subsystem from system (1.1): 

cl,:‘+ 4, = cQi(r9 49 4’)t i=1,2,3 (7.1) 

As in the preceding case and with the same conditions, to a first approximation of the normal 
form, there is no coupling between this subsystem and the others. We write the general solution of 
this system for E = 0 as follows: 
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q = (E cos t, E sin r)x, 4=lrl1,f729q31 (7.2) 

where the factor next to x is a 3 x 6 matrix (E being the unit 3 x 3 matrix), and x is a six-dimensional 
vector of arbitrary constants. 

8. OSCILLATION SHAPES AND THEIR PHASE-SPACE IMAGES 

Formula (7.2) defines an elliptic plane trajectory in con~guration space. It establishes a 
one-to-one correspondence between all elliptic trajectories in system (7.1) for E = 0 and all points in 
the phase space x E R6. The plane in which the ellipse lies is found from the condition 

41 Xl x4 ‘ 

det q2 x2 x5 = 0 

q3 x3 x6 

We introduce the following notation for the coefficients of the normal to the plane 

Kr =x3x4 - X1X6, Kz =XlX.j - X2X4, K3 =X2X6 - X3X5 WI 

When the elliptic trajectory degenerates into a section of a straight line, we have 

K=K; +K,Z +K3” =O (8.2) 

Equation (8.2) defines a three-dimensional cone in the space of x, with a one-to-one relation with 
all rectilinear oscillations in system (7.1) when E = 0. 

9. FIRST APPROXIMATION TO THE NORMAL FORM 

Making the change of variables (q, q’)-+ (x) in (7.1) according to the formulae 

q = (E cos t, E sin r)x, q’= (- E sin t, E cos t jx 

(where E is the unit 3 x 3 matrix) and averaging, we obtain a system similar to (2.3) and (2.4). 

10. BASIS OF INFINITESIMAL EVOLUTIONS 

This basis is constructed in the same ways as the case of 1: 1 resonance, but has its own features in 
the case considered. 

We have three directions for destroying the rectilinear shape 

el = dKi/dx = t 0,x6, -x5, 0, -x3, x2 1, e2 =dK2fdx=I--x6,0,x4,xs,0,-xlI, 

e3 = dK,/dx = { x5, -~4,%-x2,%,oi (10.1) 

There are also three directions for spatial precession. Suppose A is an orthogonal matrix, 
AT =: A-‘: 

IAcosf,Asint~x=1Ecosr;Esinfly~y=y(x,a,~,~) 

where LY, /3 and y are local coordinates of the rotation A (Krylov angles). Then 

e.+==&/da= l-x~,x~,O,-x~,x~,01, es =dy,W '-~x3,o,-x~,x6,o,-X4~, 

e6 = dy/dy = 10, -x3, x2,0, -x6, XS 1 for (y=p=~=o (10.2) 
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The directions of the change of frequency and ampiitude are one-dimensional, as in the preceding 
case 

fEcos(t+~),Esin(r+~)f~=IEcost,Esint)y~y=y(x,~) 

e7 =d~/~~/+=o=rx4,x~,x6,-xl- x2,-x3f 

(l+~)~E:cost,Esint~x=~Ecost,EsintJy=ry=y(x,~() 

e8 =d~/&l~=e = 1x**x2,~3,x4*xs,x6J 

(10.3) 

(10.4) 

11. PROPERTIES OF THE BASIS 

The Gram matrix of the eight vectors (lO.l~(lO.4) has the block form 

Go 62 G3 G4 

G2 Go Gs G3 

G3 GS GI G, 

Ga G3 GS GI 

(11.1) 

where Ge, the (3 x 3) Gram matrix of the destruction bundle, is identical with the Gram matrix of 
the precession bundle. Its determinant is equal to 

det Go = Kll x 112 (11.2) 

The remaining matrices have the form 

K3 0 -K2 0 Kl K2 

G2 = O--K3 K1) G3= 0 , G4=2 K2 , GS=2 K1 , 

-K, K2 0 0 K3 K3 

G1 =llxll”, G6==0 

We note the following properties of the basis. 
1. On the K = 0 cone and det Go = 0, i.e. the vectors el , e2, e3 are linearly dependent on the cone. 

Similarly for the vectors e4, es, 6%. 
2. On the K = 0 cone there are orthogonal subspaces 

el,e2,e31e4,eS,e,Ie71e8 

3. .The aigebra of the evolution operators generated by the vector fields (lO.l)-(10.4) is 
eight-dimensional and non-commutative. In the preceding (1: 1) case the dimensions of this algebra 
were the same as the dimensions of the phase space and it was Abelian. 

4. The I( = 0 is an inva~ant manifold of the precession, frequency-change and amplitude-change 
subgroups, i.e. e4, es, e6, e7, es are tangential t0 the cone. 

5. The evolution basis (lO.I)-(10.4) is non-holonomic. Apart from the destruction vector fields 
(10. l), which are potential, only es is a potential field 

eB = ds/dx, s=%(llxl12 -1) (11.3) 

12. CLASSIFICATION OF THE PERT’URBATIONS 

We will represent the right-hand sides of (7.1) in the same form as in (.5.1), taking account of the 
different dimensions. Because the effects of each of the component forces of (5.1) can be analysed 
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TABLE 2 

S H N n R r 

I I I I I I 

e, , C,., e, 0 + + 0 0 0 
e.. e,., eb. 0 0 0 0 + + 
e, + + 0 0 0 0 
5 0 0 0 + + 0 

independently and the left-hand side of system (7.1) is invariant under rotation of the axes, each of 
the matrices in relation (5.1) in its 3 x 3 version can be assumed to be in its canonical form. 
Substituting them into the operator (9.1) and projecting the result along the vectors (lO.l)-(10.4), 
we arrive at Table 2, constructed for the case K = 0. The plus signs signify that the corresponding 
projection is non-zero. Comparison of Tables 1 and 2 shows their qualitative equivalence. 

13. CONTROL OF THE OSCILLATION SHAPE 

In order to ensure the asymptotic stability of the rectilinear oscillation shape in system (7.1) for 
E = 0, we introduce feedback into the right-hand side of system (7. l), formed, as in (6.1), as follows: 

x’=- EaijeiKi- e8S (i, j= 1,2,3) (13.1) 
Li 

In this system the x’ = 0 steady-state is reached on the manifold K = 0, S = 0. The coefficient 
matrix aii should be chosen so that being bounded on the compact set K = 0, S = 0, it ensures the 
asymptotic stability of the steady-state with the maximum degree of stability. We differentiate (8.1) 
invoking system (3.1) 

If the matrix {Uij} is 
(er. es) = 2KI we obtain 

dKJdt = dK,/dx’= - z aii(el * ei) Kj - (e, . e,)S 
i. i 

(13.2) 

chosen to be the inverse of the Gram matrix Go = { (ei. ej)}, then using 

dK,/dt = - K, - 2K,S. (13.3) 

The degree of stability is a maximum, but because det Go = 0 on the cone the matrix {Uij} is 
unbounded. 

In order to avoid this it is sufficient to choose the matrix {aii} to be equal to the matrix of 
cofactors of the matrix Go: {aV} = {Guii}. Then instead of (13.3) we have 

dK,/dt = - K,det Go - 2K,S 

Computing the derivative of S and using (11.2), we obtain 

dKJdt=-2KZ(1 +2S)-4KS, dS/dt = - C G,ij Ki Kj - S( 1 + 2s) 
i,i 

(13.4) 

Since G,, depends on x, here, unlike in the plane case (6.4), one cannot write system (13.4) only 
in variables defining the stabilized manifold -K, S. For closure one must attach system (13.1) to 
system (13.4). 

To prove the stability of the manifold K = S = 0 in system (13.1), (13.4) we construct comparison systems, 
for which we write upper and lower estimates for the quadratic form 2 Go, KiKj. Because of the positive 
definiteness of this form we have 

g(X) (Kf +'Kf +Kj)< Z GoiiKiKi< h(X) (Kf +K: +K:) 

where p(x) and A (x) are the minimum and maximum eigenvalues of the matrix GO. Since the Gsij(X) are 
homogeneous functions of the fourth degree, we have 
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/l(X) = II x l14i.L(.U’L X(X) = 1) x 114A(X’) me II x’ II = 1 

We introduce the notation 

v, = min p(s’). 
ll.Yll=l 

1’: = mas h(x’) 
/Ix’II= I 

As a result the quadratic form under consideration acquires the limits 

U,(l+2S)2KQ~:GoijKiKj<V~(1+2S)‘K 

This gives us the following comparison systems 

dK’/dt = - 2(Ki)‘(l + ?Si) - 4KiSi, dS’/dr= -vt(l +2Si)‘Ki- S’(1 +2S’) (i= 1,2) 

If s(o)>o, then i=l and K(t)bK’(t), s(r)~s*(t) 

If S(O)<O. then i=2 and K(f)GK’(t), Sv)aS’(t) 

Tracing the resonant terms out of the comparison systems, we obtain their normal form 

dKi/dt = - 2(K’)‘, dS’/dr = - Si _ 4viK ‘S’ 

from which it follows that K’-+O and S’+O. 
Consequently, if S(O)<O, then 

OGK(f)hK’-0, 0 > S(f) a sz (f) - 0 

i.e. K(t)-+0 and S(t)-+O. 
If S(O)>O, then 

O<K(r)<K’-0, SV)GS -0 

If S(t) always remains positive here, it follows that K(t)+0 and S(t)+O. If however S(t) changes sign, then 
starting from the instant at which S = 0 we have to change to the comparison system i = 2. 

Thus it has been shown that the chosen control ensures the asymptotic stability of the manifold K = S = 0, 
but it is not now exponential, which is explained by the degeneracy of the destruction bundle on the cone. 

14. CONCLUSIONS 

We note the basic qualitative difference between the plane case (resonance 1: 1) and the 
three-dimensional spatial case (resonance 1: 1: 1). 

If in the plane (1: 1) case the destruction direction for the rectilinear oscillation shape and the 
precession direction for that shape are one-dimensional in phase space, then in the (1: 1: 1) case the 
destruction and precession directions are given by a three-dimensional linear manifold, degenerat- 
ing into two-dimensions on K = 0. 

In the plane case one can choose a feedback which ensures exponential asymptotic stability of 
the manifold of rectilinear shapes, and therefore also their stability under constantly acting 
perturbations. In the three-dimensional case one can only ensure asymptotic stability of power form 
for that manifold. The question of its stabilization under constantly acting perturbations therefore 
remains open. 

The basis of infinitesimal evolutions in the plane case has dimensions of four, identical with the 
dimensions of the phase space and generating a four-dimensional Abelian parametric Lie group in 
the latter. In the three-dimensional case this basis has dimensions of eight, which exceed by two the 
dimensions of the phase space in which it generates an eight-parameter non-commutative Lie group. 

It is of interest to continue the consideration of resonant cases to not only higher multiplicities, 
but also to higher orders. 
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